Função do 2º grau: teoria e exercícios vestibular


Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a ≠ 0, é denominada função do 2º grau. Generalizando temos:

A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.


As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau, ax² + bx + c = 0, dependendo do valor do discriminante ? (delta), podemos ter as seguintes situações gráficas:

? > 0, a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.


? = 0, a equação possui apenas uma raiz real. A parábola intercepta o eixo x em um único ponto.

? < 0, a equação não possui raízes reais. A parábola não intercepta o eixo x.


Uma função do 2º grau é definida pela seguinte lei de formação f(x) = ax² + bx + c ou y = ax² + bx + c, onde a, b e c são números reais e a ≠ 0. Sua representação no plano cartesiano é uma parábola que, de acordo com o valor do coeficiente a, possui concavidade voltada para cima ou para baixo. A função do 2º grau assume três possibilidades de resultados ou raízes, que são determinadas quando fazemos f(x) ou y igual a zero, transformando a função numa equação do 2º grau, que pode vir a ser resolvida por Bháskara.

Gráfico da função

Coeficiente a > 0, parábola com a concavidade voltada para cima
Coeficiente a < 0, parábola com a concavidade voltada para baixo

? > 0 – A equação do 2º grau possui duas soluções distintas, isto é, a função do 2º grau terá duas raízes reais e distintas. A parábola intersecta o eixo das abscissas (x) em dois pontos.
? = 0 – A equação do 2º grau possui uma única solução, isto é, a função do 2º grau terá apenas uma raiz real. A parábola irá intersectar o eixo das abscissas (x) em apenas um ponto.
? < 0 – A equação do 2º grau não possui soluções reais, portanto, a função do 2º grau não intersectará o eixo das abscissas (x).




Pontos notáveis do gráfico de uma função do 2º grau

O vértice da parábola constitui um ponto importante do gráfico, pois indica o ponto de valor máximo e o ponto de valor mínimo. De acordo com o valor do coeficiente a, os pontos serão definidos, observe:

Quando o valor do coeficiente a for menor que zero, a parábola possuirá valor máximo.

Quando o valor do coeficiente a for maior que zero, a parábola possuirá valor mínimo.
Outra relação importante na função do 2º grau é o ponto onde a parábola corta o eixo y. Verifica-se que o valor do coeficiente c na lei de formação da função corresponde ao valor do eixo y onde a parábola o intersecta.

Raízes da Função de 2º Grau


Determinar a raiz de uma função é calcular os valores de x que satisfazem a equação do 2º grau ax² + bx + c = 0, que podem ser encontradas através do Teorema de Bháskara: 



Número de raízes reais da função do 2º grau

Dada a função f(x) = ax² + bx + c, existirão três casos a serem considerados para a obtenção do número de raízes. Isso dependerá do valor do discriminante Δ. 


1º caso → Δ > 0: A função possui duas raízes reais e distintas, isto é, diferentes.


2º caso → Δ = 0: A função possui raízes reais e iguais. Nesse caso, dizemos que a função possui uma única raiz.


3º caso → Δ < 0: A função não possui raízes reais.
 


Soma e produto das raízes 

Seja a equação, ax² + bx + c = 0, temos que: 

Se Δ ≥ 0, a soma das raízes dessa equação é dada por  e o produto das raízes por  . De fato, x’ e x’’ são as raízes da equação, por isso temos: 




Soma das raízes 





Produto das raízes 



Efetuando a multiplicação, temos: 

 


Substituindo Δ por b² – 4ac, temos: 




Após a simplificação, temos: 


Exercícios Propostos

1) A representação cartesiana da função  é a parábola abaixo. Tendo em vista esse gráfico, podemos afirmar que:
exe1.gif (1430 bytes)
(A) a<0, b<0 e c>0
(B) a>0, b>0 e c<0
(C) a>0, b>0 e c>0
(D) a<0, b>0 e c<0
(E) a<0, b>0 e c>0

2) Qual a função que representa o gráfico seguinte?
exe2.gif (2682 bytes)
(A) 
(B) 
(C) 
(D) 
(E) 

3) O valor mínimo do polinômio , cujo gráfico é mostrado na figura, é:
exe3.gif (1535 bytes)
(A) 
(B) 
(C) 
(D) 
(E) 

4) (UFRGS) As soluções reais da desigualdade  são os números x, tais que
(A) 
(B) 
(C) 
(D) 
(E) 


5) (UFRGS) O movimento de um projétil, lançado para cima verticalmente, é descrito pela equação . Onde y é a altura, em metros, atingida pelo projétil x segundos após o lançamento. A altura máxima atingida e o tempo que esse projétil permanece no ar corresponde, respectivamente, a
(A) 6,25 m, 5s
(B) 250 m, 0 s
(C) 250 m, 5s
(D) 250 m, 200 s
(E) 10.000 m , 5s


6) (UFRGS) Considere a função , definida por , com  e . O gráfico de f
(A) não intercepta o eixo das abscissas
(B) intercepta o eixo horizontal em dois pontos, de abscissas negativa e positiva respectivamente
(C) intercepta o eixo das abscissas em um único ponto
(D) intercepta o eixo das abscissas em dois pontos, ambos positivos.
(E) intercepta o eixo das ordenadas em dois pontos.


7) A razão entre a soma e o produto das raízes da equação 
(A) 
(B) 
(C) 
(D) 
(E) 


8) A solução de  é
(A) (0, 1)
(B) (-, 0)U(1, +)
(C) (-1, 1)
(D) (-, -1)U(1,+)
(E) R


9) (UFRGS) Para que a prábola da equação  contenha os pontos (-2; 1) e (3; 1), os valores de a e b são, respectivamente,
(A)  e 
(B)  e 
(C)  e 
(D)  e 
(E)  e 


10) O vértice da parábola que corresponde à função  é
(A) (-2, -2)
(B) (-2, 0)
(C) (-2, 2)
(D) (2, -2)
(E) (2, 2)

GABARITO:

1) E 2) C 3) C 4) D 5) C 6) B 7) A 8) A 9) B 10) E









Nenhum comentário:

Postar um comentário