domingo, 4 de novembro de 2012

Diagramas de Venn: Questões resolvidas


Os diagramas de Venn são utilizados na melhor visualização das propriedades dos conjuntos, facilitando cálculos e a interpretação de situações problema. 

A relação entre tais conteúdos pode ser feita através da união de conjuntos envolvendo número de elementos. Primeiramente, explique as propriedades do número de elementos da união de dois conjuntos e posteriormente da união de três conjuntos. 

Número de elementos da união de dois conjuntos 
Consideremos dois conjuntos A e B, iremos determinar os elementos de A por n(A), os elementos de B por n(B), a união de A com B por n(A U B) e a intersecção de A com B por n(A ∩ B). Demonstre a relação utilizando o diagrama:
n(A U B) = n(A) + n(B) – n(A ∩B) 


Número de elementos da união de três conjuntos 
Considerando os conjuntos A, B e C teremos a seguinte relação na determinação do número de elementos:
n(A U B U C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(A ∩ C) – n(B ∩ C) + n(A U B U C) 


1) ( UFSE) Os senhores A, B e C concorriam à liderança de certo partido político. Para escolher o líder, cada eleitor votou apenas em dois candidatos de sua preferência. Houve 100 votos para A e B, 80 votos para B e C e 20 votos para A e C. Em consequência:

a) venceu A, com 120 votos.
b) venceu A, com 140 votos.
c) A e B empataram em primeiro lugar.
d) venceu B, com 140 votos.
e) venceu B, com 180 votos.

Resolução:
Votos recebidos pelo candidato A = 100 + 20 = 120
Votos recebidos pelo candidato B = 100 + 80 = 180
Votos recebidos pelo candidato C = 80 + 20 = 100



Resposta letra e.

2) (Unifap) O dono de um canil vacinou todos os seus cães, sendo que 80% contra parvovirose e 60% contra cinomose. Determine o porcentual de animais que foram vacinados contra as duas doenças.  

Resolução:



80 – x + x + 60 – x = 100
140 – 2x + x = 100
– x = 100 – 140
– x = – 40
x = 40

O porcentual de animais vacinados contra as duas doenças é de 40%.
 





3) Dez mil aparelhos de TV foram examinados depois de um ano de uso e constatou-se que 4.000 deles apresentavam problemas de imagem, 2.800 tinham problemas de som e 3.500 não apresentavam nenhum dos tipos de problema citados. Então o número de aparelhos que apresentavam somente problemas de imagem é: 

a) 4 000                b) 3 700                c) 3 500                d) 2 800            e) 2 500

Resolução: 

Observe o diagrama construído com base no enunciado, onde I é o conjunto dos que apresentavam defeito na imagem, S o conjunto dos que apresentavam problemas de som e N o conjunto daqueles que não apresentavam nenhum defeito citado.
Temos que  4000 - x + x + 2800 - x + 3500 = 10000, onde x é o números de televisores que apresentavam, ao mesmo tempo, os dois problemas citados. Segue que x = 10300 - 10000 = 300. Então o número de aparelhos que apresentavam somente problemas de imagem é 4000 - x = 4000 - 300 = 3700.  

 resposta letra B.

4) (PUC) Numa comunidade constituída de 1800 pessoas há três programas de TV favoritos: Esporte (E), novela (N) e Humanismo (H). A tabela abaixo indica quantas pessoas assistem a esses programas.

Programas E  N HE e NE e HN e HE, N e HNenhum
Número de telespectadores40012201080  220 180 800     100  x
Através desses dados verifica-se que o número de pessoas da comunidade que não assistem a qualquer dos três programas é:
(A) 200       (C) 900  
(B) os dados do problema estão incorretos.     (D) 100                   (E) n.d.a.

Resolução:

No diagrama de Venn-Euler colocamos a quantidade de elementos dos conjuntos, começando sempre pela interseção que tem 100 elementos.
Diagrama de Venn - Euler. Começamos sempre colocando o número de elementos da intersecção. Ao colocar o número de elementos de um conjunto, não podemos esquecer de descontar os da intersecçãoEntão, 100 + 120 + 100 + 80 +700 + 200 + 300 + x = 1800. Segue que, 1600 + x = 1800. Logo, o número de pessoas da comunidade que não assistem a qualquer dos três programas é: x = 1800 - 1600 = 200.
Assim, (A) é a opção correta.



5) Em uma prova discursiva de álgebra com apenas duas questões, 470 alunos acertaram somente uma das questões e 260 acertaram a segunda. Sendo que 90 alunos acertaram as duas e 210 alunos erraram a primeira questão. Quantos alunos fizeram a prova?

Resolução:

Temos que 90 acertaram as duas questões. Se 260 acertaram a segunda, então, 260 - 90 = 170 acertaram apenas a segunda questão. Se 470 acertaram somente uma das questões e 170 acertaram apenas a segunda, segue que, 470 - 170 = 300 acertaram somente a primeira. Como 210 erraram a primeira, incluindo os 170 que também erraram a primeira, temos que, 210 - 170 = 40 erraram as duas. Assim podemos montar o diagrama de Venn-Euler, onde: P1 é o conjunto dos que acertaram a primeira questão; P2 é o conjunto dos que acertaram a segunda e N é o conjunto dos que erraram as duas. Observe a interseção P1Ç P2 é o conjunto dos que acertaram as duas questões.
diagramas de conjuntos
Logo, o número de alunos que fizeram a prova é: 300 + 90 + 170 + 40 = 600.


6) Numa pesquisa sobre as emissoras de tevê a que habitualmente assistem, foram consultadas 450 pessoas, com o seguinte resultado: 230 preferem o canal A; 250 o canal B; e 50 preferem outros canais diferente de A e B. Pergunta-se: 
a) Quantas pessoas assistem aos canais A e B?
b) Quantas pessoas assistem ao canal A e não assistem ao canal B?
c) Quantas pessoas assistem ao canal B e não assistem ao canal A?
d) Quantas pessoas não assitem ao canal A?


Resolução: 

Seja o diagrama a seguir:

Temos que 230 - x + x + 250 - x + 50 = 450.
a) O número de pessoas que assistem aos canais A e B é x = 530 - 450 = 80
b) O número de pessoas que assistem ao canal A e não assistem ao canal B é 230 - x = 150.
c) O número de pessoas que assistem ao canal B e não assistem ao canal A é 250 - x = 170.
d) O número de pessoas que não assitem ao canal A é 250 - x + 50 = 250 - 80 + 50 = 220.





7) Em uma escola foi realizada uma pesquisa sobre o gosto musical dos alunos. Os resultados foram os seguintes: 


458 alunos disseram que gostam de Rock
112 alunos optaram por Pop
36 alunos gostam de MPB
62 alunos gostam de Rock e Pop 

Determine quantos alunos foram entrevistados.
Gostam somente de Rock = 396
Gostam somente de Pop = 50
Gostam de Rock e Pop = 62
Gostam de MPB = 36

396 + 50 + 62 + 36 = 544

Através da distribuição dos dados no diagrama constatamos que o número de alunos entrevistados é igual a 544. 


FAÇA COMO EU: Ganhe DINHEIRO no POSTMONEY
Clique no link abaixo e veja como é fácil.


20 comentários:

  1. kibe,fiquei puto quando percebi que ja tinha acabado essa bateria de exercicios

    ResponderExcluir
  2. Adorei esse site me ajudou muito com as resoluções das questões :)

    ResponderExcluir
  3. Parabéns pelo site. Muito bom!!

    ResponderExcluir
  4. Também curti muito o site, me auxiliou bastante, gostaria que pusesse mais exercícios
    ^.^

    ResponderExcluir
  5. Muiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiito obrigado mesmo, valew demais, ajudo muitoo!!!

    ResponderExcluir
  6. gostei bastante, vou fazer uma prova pra escola tecnica federal e sempre cai questoes assim...

    ResponderExcluir
  7. Muito obrigada pelas questões!

    ResponderExcluir
  8. muito bom me ajudou d+++ pra prova amanha....mais poderia ter mais exercicios...

    ResponderExcluir
  9. muuuito bom mesmo, agradeço antecipadamente se houverem mais questoes sobre divesos assuntos

    ResponderExcluir
  10. pessoal , gostaria de saber um coisa que fiquei em dúvida , no exercicio 3. da onde se tirou o 10300?

    ResponderExcluir
    Respostas
    1. 10 300 é a soma do numero de tvs com problema de imagem, com problema de som, e sem problema nenhum, para saber quantas tem problema de som e imagem é só diminuir esse valor assim: 10 300 - 10 000 (que é o total de tvs) que vai dar 300. então: 4000-300 = 3 700 tvs com problemas de imagem

      Excluir
    2. depois de ter postado a pergunta , eu entendi o exercicio hehhehee.É que eu sou assim, olhei a pergunta e nao entendi , nao fico tentando kkkkkkkk, mas muitissimo obrigado pela resposta..

      Excluir
  11. Não entendi a questão 4 dá onde saiu esse 1800 ??????????

    ResponderExcluir
    Respostas
    1. 1800 é o valor de quantas pessoas existem na comunidade n( A u B u C ).

      Excluir
  12. Meu nome é Antonio e gostei das questões. Me ajudaram muito. Valeu!

    ResponderExcluir