Realizamos o seu estudo na lógica matemática, analisando possibilidades e combinações. Acompanhe o exemplo a seguir, para poder compreender melhor o que vêm a ser a análise combinatória.
Dado o conjunto B dos algarismos B = { 1,2,3,4}. Qual a quantidade de números naturais de 3 algarismos que podemos formar utilizando os elementos do grupo B?
Esse é um tipo de problema de análise combinatória, pois teremos que formar agrupamentos, nesse caso formar números de 3 algarismos, ou seja, formar agrupamentos com os elementos do conjunto B tomados de 3 em 3.
Veja como resolveríamos esse problema sem a utilização de critérios ou fórmulas que o estudo da análise combinatória pode nos fornecer.
Esse esquema construído acima representa todos os números naturais de 3 algarismos que podemos formar com os algarismos 1,2,3,4, portanto, concluindo que é possível formar 24 agrupamentos.
Para descobrir essa quantidade de agrupamentos possíveis não é necessário montar todo esse esquema, basta utilizar do estudo da análise combinatória que divide os agrupamentos em Arranjos simples, Combinações simples, Permutações simples e Permutações com elementos repetidos. Cada uma dessas divisões possui uma fórmula e uma maneira diferente de identificação, que iremos estudar nessa seção.
O estudo da análise combinatória é dividido em:
Princípio fundamental da contagem
Fatorial
Arranjos Simples
Permutação Simples
Combinação Simples
Permutação com elementos repetidos.
ARTIGOS ''ANÁLISE COMBINATÓRIA''