sábado, 23 de fevereiro de 2013

Leis de Mendel resumo

Gregor Johann Mendel

Até meados do século XIX imaginava-se que, se as formas alternativas de determinado caráter se cruzassem geneticamente, o resultado seria uma combinação de todas elas. Mendel, monge e botânico austríaco de origem tcheca, foi o primeiro a demonstrar que não existe herança por combinação: os caracteres permanecem diferenciados e intatos.
Johann Mendel nasceu em Heinzendorf, Áustria, em 22 de julho de 1822. Freqüentou o ginásio de Troppau e estudou dois anos no Instituto de Filosofia de Ormütz, depois Olomouc, hoje na República Tcheca. Em 1843 entrou para o convento dos agostinianos em Brünn, atual Brno, e na época importante centro cultural. Adotou então o nome de Gregor e passou a estudar teologia e línguas.

Em 1847 ordenou-se e em 1851 foi enviado pelo abade à Universidade de Viena para estudar física, matemática e ciências naturais, disciplinas que três anos depois passou a lecionar em Brünn. Nos jardins do convento, em 1856, Mendel iniciou as experiências com hibridação de ervilhas-de-cheiro. Dez anos de estudo forneceram-lhe dados para criar um sistema de contagem dos híbridos resultantes do cruzamento das plantas e, com base na cor e forma da semente, forma da vagem, altura do caule etc., formulou as leis relativas à hereditariedade dos caracteres dominantes e recessivos, cerne de toda a teoria cromossômica da hereditariedade, motivo por que Mendel faz jus ao título de fundador da genética.

Para a enunciação de tais leis, Mendel realizou uma série de cruzamentos com ervilhas durante gerações sucessivas e, mediante a observação do predomínio da cor (verde ou amarela), formulou a primeira lei, chamada lei do monoibridismo, segundo a qual existe nos híbridos uma característica dominante e uma recessiva. Cada caráter é condicionado por um par de fatores (genes), que se separam na formação dos gametas. Depois Mendel fez cruzamentos em que havia dois tipos de características: a cor (amarela ou verde), e a forma (lisa ou rugosa) das sementes.

Baseado na premissa segundo a qual a herança da cor era independente da herança da superfície da semente, enunciou sua segunda lei, chamada lei da recombinação ou da segregação independente, pela qual, num cruzamento em que estejam envolvidos dois ou mais caracteres, os fatores que determinam cada um deles se separam de forma independente durante a formação dos gametas e se recombinam ao acaso, para formar todas as recombinações possíveis.

Os resultados dessas pesquisas foram reunidos em Versuche über Pflanzenhybriden (1865; Experiências sobre híbridos das plantas), e Über einige aus künstlicher Befruchtung gewonnene Hieraciumbastarde (1869; Alguns híbridos do Hieracium obtidos por fecundação artificial), ambos apresentados à Sociedade de Ciências Naturais de Brünn. Esses estudos, no entanto, não tiveram repercussão no meio científico, talvez pelo fato de Mendel ter baseado suas conclusões em material estatístico, numa época em que a matemática ainda não era empregada em biologia. O fato é que a obra de Mendel permaneceu ignorada até o início do século XX, quando alguns botânicos, em pesquisas independentes, chegaram a resultados semelhantes e encontraram as publicações da Sociedade de Brünn. Achava-se entre estes o austríaco Erich Tschermak von Seysenegg, que  redescobriu as esquecidas leis de Mendel sobre a disjunção dos híbridos. Nos Países Baixos, outro botânico, Hugo De Vries, propôs uma nova teoria para o crescimento e evolução das plantas, descobriu o fenômeno da mutação e resgatou as leis de Mendel.

Considerada por Jean Rostand "uma obra-prima da experimentação e da lógica, marcando etapa decisiva no estudo da hereditariedade", a obra do religioso botânico exerceu influência definitiva em áreas como fisiologia, bioquímica, medicina, agricultura e até nas ciências sociais. Eleito abade do mosteiro em 1868, Mendel, sem estímulo para continuar suas pesquisas e sobrecarregado com as funções administrativas, abandonou a atividade científica. Morreu no convento de Brünn em 6 de janeiro de 1884. 



 Os experimentos de Mendel
A escolha da planta
A ervilha é uma planta herbácea leguminosa que pertence ao mesmo grupo do feijão e da soja. Na reprodução, surgem vagens contendo sementes, as ervilhas. Sua escolha como material de experiência não foi casual: uma planta fácil de cultivar, de ciclo reprodutivo curto e que produz muitas sementes. Desde os tempos de Mendel existiam muitas variedades disponíveis, dotadas de características de fácil comparação. Por exemplo, a variedade que flores púrpuras podia ser comparada com a que produzia flores brancas; a que produzia sementes lisas poderia ser comparada cm a que produzia sementes rugosas, e assim por diante. Outra vantagem dessas plantas é que estame e pistilo, os componentes envolvidos na reprodução sexuada do vegetal, ficam encerrados no interior da mesma flor, protegidas pelas pétalas. Isso favorece a autopolinização e, por extensão, a autofecundação, formando descendentes com as mesmas características das plantas genitoras.




A partir da autopolinização, Mendel produziu e separou diversas linhagens puras de ervilhas para as características que ele pretendia estudar. Por exemplo, para cor de flor, plantas de flores de cor de púrpura sempre produziam como descendentes plantas de flores púrpuras, o mesmo ocorrendo com o cruzamento de plantas cujas flores eram brancas. Mendel estudou sete características nas plantas de ervilhas: cor da flor, posição da flor no caule, cor da semente, aspecto externo da semente, forma da vagem, cor da vagem e altura da planta.

As Leis de Mendel

Por volta de 1860, Gregor Mendel experimentou diversos cruzamentos entre pés de ervilha da variedade Pisum sativum, que apresentavam diferenças de caracteres facilmente observáveis, como a superfície lisa ou rugosa das sementes e sua cor verde ou amarela. Determinou, em seguida, a proporção de descendentes que herdavam um e outro caráter e acompanhou as modificações dessa proporção ao longo de gerações sucessivas. 

A primeira Lei de Mendel 


A comprovação da hipótese de dominância e recessividade nos vários experimentos efetuados por Mendel levou, mais tarde à formulação da sua 1º lei: “Cada característica é determinada por dois fatores que se separam na formação dos gametas, onde ocorrem em dose simples”, isto é, para cada gameta masculino ou feminino encaminha-se apenas um fator.
Mendel não tinha idéia da constituição desses fatores, nem onde se localizavam.

As bases celulares da segregação
A redescoberta dos trabalhos de Mendel, em 1900, trouxe a questão: onde estão os fatores hereditários e como eles se segregam?
Em 1902, enquanto estudava a formação dos gametas em gafanhotos, o pesquisador norte americano Walter S. Sutton notou surpreendente semelhança entre o comportamento dos cromossomos homólogos, que se separavam durante a meiose, e os fatores imaginados por Mendel. Sutton lançou a hipótese de que os pares de fatores hereditários estavam localizados em pares de cromossomos homólogos, de tal maneira que a separação dos homólogos levava à segregação dos fatores.
Hoje sabemos que os fatores a que Mendel se referiu são os genes (do grego genos, originar, provir), e que realmente estão localizados nos cromossomos, como Sutton havia proposto. As diferentes formas sob as quais um gene pode se apresentar são denominadas alelos. A cor amarela e a cor verde da semente de ervilha, por exemplo, são determinadas por dois alelos, isto é, duas diferentes formas do gene para cor da semente.

                         Exemplo da primeira lei de Mendel em um animal
Vamos estudar um exemplo da aplicação da primeira lei de Mendel em um animal, aproveitando para aplicar a terminologia modernamente usada em Genética. A característica que escolhemos foi a cor da pelagem de cobaias, que pode ser preta ou branca. De acordo com uma convenção largamente aceita, representaremos por B o alelo dominante, que condiciona a cor preta, e por b o alelo recessivo, que condiciona a cor branca.
Uma técnica simples de combinar os gametas produzidos pelos indivíduos de F1 para obter a constituição dos indivíduos de F2 é a montagem do quadrado de Punnet. Este consiste em um quadro, com número de fileiras e de colunas que correspondem respectivamente, aos tipos de gametas masculinos e femininos formados no cruzamento. O quadrado de Punnet para o cruzamento de cobaias heterozigotas é:


B
Gametas  paternos
b
Gametas maternos
  B                         b
BB
Preto
Bb
Preto
Bb
Preto
bb
Branco

Fonte: http://www.sobiologia.com.br/conteudos/Genetica/leismendel.php
A segunda lei de Mendel
A segunda lei, a da segregação, demonstra que os fatores hereditários (genes) constituem unidades independentes que passam de uma geração para outra sem sofrer nenhuma alteração. Quando se cruzam entre si os descendentes obtidos do cruzamento entre duas linhagens puras, observa-se que o caráter que não se manifestou -- recessivo -- fica patente na segunda geração, na proporção de um quarto da descendência, enquanto o caráter dominante ocorre em três quartos dos descendentes. Portanto, cada par de genes que determinam certo caráter separa-se no processo de formação das células reprodutoras e os fragmentos resultantes se combinam ao acaso.
O processo fica claro quando é representado num esquema gráfico. Chame-se A o gene dominante e a o recessivo. Os sucessivos cruzamentos darão os seguintes resultados:


Num cruzamento entre descendentes do primeiro, ocorre uma nova transmissão de caracteres:

Por ser dominante, A se manifestará em três quartos dos descendentes (basta que esteja presente um só gene A), enquanto que, para que a se manifeste, o indivíduo deve ser portador de dois genes a, o que reduz substancialmente as possibilidades de que esse caráter apareça.
A segunda lei, a da transmissão independente, dispõe que cada caráter é herdado independentemente dos caracteres restantes. Para chegar a essa conclusão, Mendel cruzou plantas que diferiam em dois caracteres (di-híbridos) e cujo genótipo era, por exemplo, AaBb. Quando se formaram as células reprodutoras, originaram-se quatro tipos distintos: AB, Ab, aB e ab, que se combinaram de todas as formas possíveis com os mesmos tipos do outro indivíduo:

No total, obtêm-se 16 genótipos possíveis, que aparecem no quadro acima. Manifestarão o duplo caráter AB os seguintes: AABB, AABb, AaBB, AaBb, AAbB, AabB, aABB, aABb e aAbB, num total de nove genótipos. O caráter dominante A com o recessivo b está em três indivíduos: AAbb, Aabb e aAbB; o recessivo a e o dominante B em outros três: aaBB, aaBb e aabB; e os recessivos a e b só aparecem em um, o aabb. A proporção é, portanto, 9/3/3/1.
As leis de Mendel cumprem-se em todos os seres vivos dotados de reprodução sexuada e nos quais se formam células reprodutoras especiais. Em muitos casos, porém, as proporções previstas segundo essas leis não ocorrem, em virtude da intervenção de uma série de fatores que mascaram os resultados previstos. Assim, muitos caracteres não dependem apenas de um par de genes, mas de dois ou mais, de forma que, para que o caráter se torne patente e o produto final se elabore, é necessário que todos os genes funcionem normalmente. Se algum deles sofrer alteração, a proporção será afetada.
Muitas vezes, certos caracteres não se transmitem de forma independente porque os genes que os codificam estão próximos um do outro num mesmo cromossomo, no que se denomina grupo de ligação. Dessa forma, por exemplo, se em estudos genéticos realizados em espécimes da mosca-do-vinagre os alelos codificadores de caracteres como "corpo negro" ou "asa curva" se encontrarem localizados no mesmo par de cromossomos homólogos, caberia esperar que um espécime de corpo negro apresentasse sempre asas curvas. Tal fenômeno, no entanto, não se produz, por força do chamado crossing-over ou sobrecruzamento.
O crossing-over ocorre no processo de divisão celular ou meiose quando dois fragmentos cromossômicos (cromátides), cada um pertencente a um membro do mesmo par de cromossomos, unem-se momentaneamente para mais tarde se romperem e permutarem fragmentos. Nos casos em que se registram crossing-over, duas cromátides com genes AB e ab passam a apresentar uma dotação genética da forma Ab e aB. Em geral, esse tipo de inter-relação constitui o que se denomina recombinação genética.

 Resumo

1ª Lei de Mendel: (Monoibrídismo) Cada caráter é condicionado por dois fatores. Eles se separam na formação dos gametas, indo apenas um fator por gameta. (Lei da segregação de genes).
Observações de Mendel :
  • P (parentais): primeiros cruzamentos;
  • F1: filhos do cruzamento parental.
Conclusões:
  • Cada característica é determinada por 2 genes;
  • A primeira lei de Mendel é uma confirmação da meiose;
  • A utilização da mesma letra (AA e aa) é justificado por serem genes alelos. 
A segunda Lei de Mendel: (Diibridismo) Os genes para dois ou mais caracteres são transmitidos aos   gametas de forma totalmente independente, um em relação ao outro. A segunda lei também e conhecida como lei de segregação independente.
Uma fórmula, onde é fácil descobrir quantos tipos de gametas são possíveis é o 2n, onde n representa numero de heterozigotos do genótipo. Essa fórmula só indica o numero, para sabermos os tipos é usado o sistema de chaves.
Por não ser prático a Segunda lei de Mendel pode ter seu uso substituído por noções de probabilidade.
Condição: as características tem que estar em cromossomos diferentes, se ocorrer o contrário (dois caracteres estarem no mesmo cromossomo é um caso de Linkage).
A meiose e a 2ª lei de Mendel: A segregação independente postulada por Mendel só e valida para o caso em que os genes estejam localizados em cromossomos diferentes.

Fonte: http://www.coladaweb.com/biologia/genetica/leis-de-mendel

Fenótipo
O termo “fenótipo” (do grego pheno, evidente, brilhante, e typos, característico) é empregado para designar as características apresentadas por um indivíduo, sejam elas morfológicas, fisiológicas e comportamentais. Também fazem parte do fenótipo características microscópicas e de natureza bioquímica, que necessitam de testes especiais para a sua identificação.
Entre as características fenotípicas visíveis, podemos citar a cor de uma flor, a cor dos olhos de uma pessoa, a textura do cabelo, a cor do pelo de um animal, etc. Já o tipo sanguíneo e a sequência de aminoácidos de uma proteína são características fenotípicas revelada apenas mediante testes especiais.

O fenótipo de um indivíduo sofre transformações com o passar do tempo. Por exemplo, à medida que envelhecemos o nosso corpo se modifica. Fatores ambientais também podem alterar o fenótipo: se ficarmos expostos à luz do sol, nossa pele escurecerá.

Genótipo
O termo “genótipo” (do grego genos, originar, provir, e typos, característica) refere-se à constituição genética do indivíduo, ou seja, aos genes que ele possui. Estamos nos referindo ao genótipo quando dizemos, por exemplo, que uma planta de ervilha é homozigota dominante (VV) ou heterozigota (Vv) em relação à cor da semente.
Fenótipo: genótipo e ambiente em interação
O fenótipo resulta da interação do genótipo com o ambiente. Consideremos, por exemplo, duas pessoas que tenham os mesmos tipos de alelos para pigmentação da pele; se uma delas toma sol com mais frequência que a outra, suas tonalidades de pele, fenótipo, são diferentes.
Um exemplo interessante de interação entre genótipo e ambiente na produção do fenótipo é a reação dos coelhos da raça himalaia à temperatura. Em temperaturas baixas, os pelos crescem pretos e, em temperaturas altas, crescem brancos. A pelagem normal desses coelhos é branca, menos nas extremidades do corpo (focinho, orelha, rabo e patas), que, por perderem mais calor e apresentarem temperatura mais baixa, desenvolvem pelagem preta.

Determinando o genótipo
Enquanto que o fenótipo de um indivíduo pode ser observado diretamente, mesmo que seja através de instrumentos, o genótipo tem que ser inferido através da observação do fenótipo, da análise de seus pais, filhos e de outros parentes ou ainda pelo sequenciamento do genoma do indivíduo, ou seja, leitura do que está nos genes. A técnica do sequenciamento, não é amplamente utilizada, devido ao seu alto custo e pela necessidade de aparelhagem especializada. Por esse motivo a observação do fenótipo e análise dos parentes ainda é o recurso mais utilizado para se conhecer o genótipo.
Quando um indivíduo apresenta o fenótipo condicionado pelo alelo recessivo, conclui-se que ele é homozigoto quanto ao alelo em questão. Por exemplo, uma semente de ervilha verde é sempre homozigota vv. Já um indivíduo que apresenta o fenótipo condicionado pelo alelo dominante poderá ser homozigoto ou heterozigoto. Uma semente de ervilha amarela, por exemplo, pode ter genótipo VV ou Vv. Nesse caso, o genótipo do indivíduo só poderá ser determinado pela análise de seus pais e de seus descendentes.
Caso o indivíduo com fenótipo dominante seja filho de pai com fenótipo recessivo, ele certamente será heterozigoto, pois herdou do pai um alelo recessivo. Entretanto, se ambos os pais têm fenótipo dominante, nada se pode afirmar. Será necessário analisar a descendência do indivíduo em estudo: se algum filho exibir o fenótipo recessivo, isso indica que ele é heterozigoto.

 

Cruzamento-teste

Este cruzamento é feito com um indivíduo homozigótico recessivo para o fator que se pretende estudar, que facilmente se identifica pelo seu fenótipo e um outro de genótipo conhecido ou não. Por exemplo, se cruzarmos um macho desconhecido com uma fêmea recessiva podemos determinar se o macho é portador daquele caráter recessivo ou se é puro. Caso este seja puro todos os filhos serão como ele, se for portador 25% serão brancos, etc. Esta explicação é muito básica, pois geralmente é preciso um pouco mais do que este único cruzamento.
A limitação destes cruzamentos está no fato de não permitirem identificar portadores de alelos múltiplos para a mesma característica, ou seja, podem existir em alguns casos mais do que dois alelos para o mesmo gene e o efeito da sua combinação variar. Além disso, podemos estar cruzando um fator para o qual o macho ou fêmea teste não são portadores, mas sim de outros alelos.




Construindo um heredograma

No caso da espécie humana, em que não se pode realizar experiências com cruzamentos dirigidos, a determinação do padrão de herança das características depende de um levantamento do histórico das famílias em que certas características aparecem. Isso permite ao geneticista saber se uma dada característica é ou não hereditária e de que modo ela é herdada. Esse levantamento é feito na forma de uma representação gráfica denominada heredograma (do latim heredium, herança), também conhecida como genealogia ou árvore genealógica.
Construir um heredograma consiste em representar, usando símbolos, as relações de parentesco entre os indivíduos de uma família. Cada indivíduo é representado por um símbolo que indica as suas características particulares e sua relação de parentesco com os demais.
Indivíduos do sexo masculino são representados por um quadrado, e os do sexo feminino, por um círculo. O casamento, no sentido biológico de procriação, é indicado por um traço horizontal que une os dois membros do casal. Os filhos de um casamento são representados por traços verticais unidos ao traço horizontal do casal.
Os principais símbolos são os seguintes:



A montagem de um heredograma obedece a algumas regras:
1ª) Em cada casal, o homem deve ser colocado à esquerda, e a mulher à direita, sempre que for possível.
2ª) Os filhos devem ser colocados em ordem de nascimento, da esquerda para a direita.
3ª) Cada geração que se sucede é indicada por algarismos romanos (I, II, III, etc.). Dentro de cada geração, os indivíduos são indicados por algarismos arábicos, da esquerda para a direita. Outra possibilidade é se indicar todos os indivíduos de um heredograma por algarismos arábicos, começando-se pelo primeiro da esquerda, da primeira geração.

Interpretação dos Heredogramas
A análise dos heredogramas pode permitir se determinar o padrão de herança de uma certa característica (se é autossômica, se é dominante ou recessiva, etc.). Permite, ainda, descobrir o genótipo das pessoas envolvidas, se não de todas, pelo menos de parte delas. Quando um dos membros de uma genealogia manifesta um fenótipo dominante, e não conseguimos determinar se ele é homozigoto dominante ou heterozigoto, habitualmente o seu genótipo é indicado como A_B_ou C_, por exemplo.
A primeira informação que se procura obter, na análise de um heredograma, é se o caráter em questão é condicionado por um gene dominante ou recessivo. Para isso, devemos procurar, no heredograma, casais que são fenotipicamente iguais e tiveram um ou mais filhos diferentes deles. Se a característica permaneceu oculta no casal, e se manifestou no filho, só pode ser determinada por um gene recessivo. Pais fenotipicamente iguais, com um filho diferente deles, indicam que o caráter presente no filho é recessivo!
Uma vez que se descobriu qual é o gene dominante e qual é o recessivo, vamos agora localizar os homozigotos recessivos, porque todos eles manifestam o caráter recessivo. Depois disso, podemos começar a descobrir os genótipos das outras pessoas. Devemos nos lembrar de duas coisas:
1ª) Em um par de genes alelos, um veio do pai e o outro veio da mãe. Se um indivíduo é homozigoto recessivo, ele deve ter recebido um gene recessivo de cada ancestral.
2ª) Se um indivíduo é homozigoto recessivo, ele envia o gene recessivo para todos os javascript:void(0);seus filhos. Dessa forma, como em um “quebra-cabeças”, os outros genótipos vão sendo descobertos. Todos os genótipos devem ser indicados, mesmo que na sua forma parcial (A_, por exemplo).

Exemplo:



Em uma árvore desse tipo, as mulheres são representadas por círculos e os homens por quadrados. Os casamentos são indicados por linhas horizontais ligando um círculo a um quadrado. Os algarismos romanos I, II, III à esquerda da genealogia representam as gerações. Estão representadas três gerações. Na primeira há uma mulher e um homem casados, na segunda, quatro pessoas, sendo três do sexo feminino e uma do masculino. Os indivíduos presos a uma linha horizontal por traços verticais constituem uma irmandade. Na segunda geração observa-se o casamento de uma mulher com um homem de uma irmandade de três pessoas.
 Questões sobre as Leis de Mendel

1) (PUCSP-93) Em relação à anomalia gênica autossômica recessiva albinismo, qual será a proporção de espermatozóides que conterá o gene A em um homem heterozigoto?
a) 1/2                 b) 1/4            c) 1/8                d) 1/3             e) 1
2) (UFC-CE-93) Olhos castanhos são dominantes sobre os olhos azuis. Um homem de olhos castanhos, filho de pai de olhos castanhos e mãe de olhos azuis, casa-se com uma mulher de olhos azuis. A probabilidade de que tenham um filho de olhos azuis é de:
a) 25%             b) 50%             c) 0%            d) 100%           e) 75%
3) A 1ª lei de Mendel considera que:
a) os gametas são produzidos por um processo de divisão chamado meiose.
b) na mitose, os pares de fatores segregam-se independentemente.
c) os gametas são puros, ou seja, apresentam apenas um componente de cada par de fatores considerado.
d) o gene recessivo se manifesta unicamente em homozigose.
e) a determinação do sexo se dá no momento da fecundação.
4)  (UFPA) Usando seus conhecimentos de probabilidade, Mendel chegou às seguintes conclusões, com exceção de uma delas. Indique-a:
a) Há fatores definidos (mais tarde chamados genes) que determinam as características hereditárias.
b) Uma planta possui dois alelos para cada caráter os quais podem ser iguais ou diferentes.
c) Os alelos se distribuem nos gametas sem se modificarem e com igual probabilidade.
d) Na fecundação, a união dos gametas se dá ao acaso, podendo-se prever as proporções dos vários tipos de descendentes.
e) Os fatores (genes) responsáveis pela herança dos caracteres estão localizados no interior do núcleo, em estruturas chamadas cromossomos.
5) (FUCMT-MS-83) Nos coelhos, a cor preta dos pêlos é dominante em relação à cor branca. Cruzaram-se coelhos pretos heterozigotos entre si e nasceram 360 filhotes. Destes, o número de heterozigotos provavelmente é:
a) zero              b) 90          c) 180          d) 270          e) 360
6) (UECE) Um grupo de coelhos de mesmo genótipo foi mantido junto em uma gaiola e produziu 27 animais de coloração escura para 9 de coloração clara. Admitindo-se para C o gene dominante e c para o gene recessivo, qual o genótipo dos animais, respectivamente para machos e fêmeas?
a) CC x cc
b) Cc x CC
c) cc x cc
d) CC x CC
e) Cc x Cc
7) (UFSCAR) Que é fenótipo?
a) É o conjunto de características decorrentes da ação do ambiente.
b) Influi no genótipo, transmitindo a este as suas características.
c) É o conjunto de características decorrentes da ação do genótipo.
d) É o conjunto de características de um indivíduo.
e) É o conjunto de caracteres exteriores de um indivíduo.
8) (MED. SANTO AMARO) Do primeiro cruzamento de um casal de ratos de cauda média nasceram dois ratinhos de cauda média e um ratinho de cauda longa. Foram então feitas várias suposições a respeito da transmissão da herança desse caráter. Assinale a que lhe parecer mais correta.
a) Cauda média é dominante sobre cauda longa.
b) Ambos os pais são homozigotos.
c) Ambos os pais são heterozigotos.
d) Cauda longa é dominante sobre cauda média.
e) As suposições a e c são aceitáveis.
9) (F. OBJETIVO-SP-93)  A genealogia anexa refere-se a uma família com casos de alcaptonúria, anomalia  provocada por um gene recessivo.



Nesta genelalogia os genótipos que não podem ser determinados são os dos indivíduos:

a) 1, 2 e 5
b) 1, 3 e 6
c) 3, 5 e 6
d) 3, 8 e 10
e) 7, 8 e 10

10) (UFBA) No heredograma a seguir, os símbolos em preto representam indivíduos afetados pela polidactilia e os símbolos em branco, indivíduos normais. Conclui-se, desse heredograma, que, em relação à polidactilia:


a) os indivíduos afetados sempre são homozigotos.
b) os indivíduos normais sempre são heterozigotos.
c) os indivíduos heterozigotos são apenas de um dos dois sexos.
d) pais normais originam indivíduos homozigotos recessivos.
e) pais normais originam individuos heterozigotos.

11) (UDESC 2009) Assinale a alternativa correta relacionada à lei de segregação independente estabelecida por Gregor Mendel.

aa) Gametas parentais são aqueles que apresentam as novas combinações gênicas resultantes da permutação. Gametas recombinantes são os que apresentam as combinações gênicas não-resultantes da permutação.
b) Os filhos de um homem de olhos castanho claros (AaBb) e de uma mulher, poderão apresentar para a mesma característica fenótipo castanho-claro, castanho-escuro, castanho-médio, azul e verde .
c) A proporção genotípica é 9:3:3:1.
d) A herança da cor dos olhos na espécie humana é explicada pela primeira Lei de Mendel.
e) A cor da pelagem dos cães e da plumagem dos periquitos é uma situação de herança quantitativa.

12) (UFMG) Indique a proposição que completa, de forma correta, a afirmativa abaixo:

Por meiose, uma célula ________ com ________ cromossomos formará _______ células ­­­­­­­­­­­_________________, com _________ cromossomos cada uma.

a)      2n, 20, 02, 2n, 20.
b)      Diploide, 10, 04, haploides, 05.
c)       Diploide, 46, 04, haploides, 23.
d)      n, 10, 02, 2n, 05.
e)      Haploide, 05, 04, n, 20.

13) (FUC-MT) Cruzando-se ervilhas verdes vv com ervilhas amarelas Vv, os descendentes serão:

a)      100% vv, verdes;
b)      100% VV, amarelas;
c)       50% Vv, amarelas; 50% vv, verdes;
d)      25% Vv, amarelas; 50% vv, verdes; 25% VV, amarelas;
e)      25% vv, verdes; 50% Vv, amarelas; 25% VV, verdes.

14) De acordo com a primeira lei de Mendel confira as afirmações abaixo e marque a que apresentar informações incorretas.

a)      Em cada espécie de ser vivo o número de cromossomos é constante, e isso ocorre porque na formação dos gametas esse número é reduzido à metade e depois, na fecundação, restabelece-se o número inicial.
b)      Cada caráter é determinado por um par de fatores que se separam na formação dos gametas, indo um fator do par para cada gameta, que é, portanto, puro.
c)       Quando os alelos de um par são iguais, fala-se em condição heterozigótica (para a qual Mendel usava o termo puro), e quando os alelos são diferentes, fala-se em condição homozigótica (para a qual Mendel usava o termo hibrido).
d)      Um mesmo caráter pode apresentar duas ou mais variáveis, e a variável de cada caráter é denominada fenótipo.
e)      O termo genótipo pode ser aplicado tanto ao conjunto total de genes de um indivíduo como a cada gene em particular.

15) Um gato da cor marrom foi cruzado com duas fêmeas. A primeira fêmea era da cor preta, e teve 7 filhotes da cor preta e 6 filhotes da cor marrom.  Já a outra fêmea, também era da cor preta, e teve 14 filhotes, sendo todos eles da cor preta. A partir desses cruzamentos marque a opção que contém os genótipos do macho, da primeira e da segunda fêmea respectivamente.

a)      Aa, aa, aa.
b)      AA, aa, aa.
c)       aa, AA, aa.
d)      Aa, Aa, AA.
e)      Aa, AA, Aa.

16) O termo genótipo refere-se ao:

a) conjunto de todos os caracteres de um organismo;
b) conjunto de caracteres externos de um organismo;
c) conjunto de caracteres internos de um organismo;
d) conjunto de cromossomos de um organismo;
e) conjunto de genes de um organismo.
                       

17) O fenótipo de um indivíduo é:

a) herdado dos pais;
b) independente do genótipo;
c) independente do ambiente;
d) o resultado da interação do genótipo com o ambiente;
e) o conjunto de cromossomos.

18) A pelagem das cobaias pode ser arrepiada ou lisa, dependendo da presença do gene dominante L e do gene recessivo l. O resultado do cruzamento entre um macho liso com uma fêmea arrepiada heterozigota é:
a) 50% lisos e 50% arrepiados heterozigotos;
b) 50% arrepiados e 50% lisos heterozigotos;
c) 100% arrepiados;
d) 100% lisos;
e) 25% arrepiados, 25% lisos e 50% arrepiados heterozigotos.
19) Nas cobaias, o gene B para pelagem preta é dominante sobre b, que condiciona pelagem branca. Duas cobaias pretas heterozigotas são cruzadas. Calcule:
a) a proporção genotípica;
b) a proporção fenotípica.
20) No milho, um gene produz grãos vermelhos se a espiga for exposta à luz, mas, se as espigas ficarem cobertas, os grãos permanecem brancos. O fenômeno descrito ilustra:
 a) a atuação do meio das mutações;
b) o processo da seleção natural;
c) a influência do ambiente na alteração do genótipo;
d) a interação do genótipo com o meio ambiente;
e) a transmissão dos caracteres adquiridos.
 Gabarito:
1) A   2) B   3) C  4) E   5) C   6) E  7) C   8) E   9) D  10) D  11) B  12) C  13) letra C. O enunciado nos diz que as ervilhas verdes são homozigóticas com genótipo recessivo (vv), e que as ervilhas amarelas são heterozigóticas com genótipo dominante (Vv). Ao cruzarmos esses indivíduos teremos:
A partir da resolução acima podemos concluir que 50% dos descendentes possuem genótipo Vv, ou seja, cor amarela, e os outros 50% possuem o genótipo vv, ou seja, cor verde.
14) C  15) Sabemos que a cor preta é dominante sobre a cor marrom, e por esse motivo já podemos dizer que o macho tem um gene recessivo, enquanto as duas fêmeas possuem pelo menos um dos genes dominantes, pois ambas tiveram filhotes da cor preta.
O enunciado nos disse que a primeira fêmea teve filhotes da cor marrom e da cor preta, sendo assim, podemos concluir que essa fêmea possui um dos genes dominante e o outro gene recessivo, sendo então heterozigota (Aa). Dessa forma, o cruzamento desses indivíduos obterá a seguinte descendência:
Sendo que os genótipos Aa definirão a cor preta e os genótipos aa definirão a cor marrom. Diante disso concluímos que a primeira fêmea tem genótipo Aa, pois teve, em sua descendência, filhotes de cor preta e de cor marrom.
Retornando ao enunciado mais uma vez, vemos que a segunda fêmea teve filhotes apenas de cor preta. Nesse caso podemos concluir que essa fêmea é homozigota dominante (AA), e o cruzamento com o macho de cor marrom (aa) ficou da seguinte forma:
Observe que os todos os descendentes desse cruzamento possuem genótipo dominante, e por esse motivo são todos da cor preta.

16) E  17) D  18) A  19) a) 1/4 BB; 1/2 Bb; 1/4 bb    b) 3/4 pretas; 1/4 brancas  20) D



Related Posts Plugin for WordPress, Blogger...

Nenhum comentário:

Postar um comentário