sábado, 22 de dezembro de 2012

M.m.c e m.d.c questões vestibular


Artigo com questões de vestibular resolvidas e propostas sobre m.m.c e m.d.c

1) Uma empresa de logística é composta de três áreas: administrativa, operacional e vendedores. A área administrativa é composta de 30 funcionários, a operacional de 48 e a de vendedores com 36 pessoas. Ao final do ano, a empresa realiza uma integração entre as três áreas, de modo que todos os funcionários participem ativamente. As equipes devem conter o mesmo número de funcionários com o maior número possível. Determine quantos funcionários devem participar de cada equipe e o número possível de equipes. 


Encontrar o MDC entre os números 48, 36 e 30.
Decomposição em fatores primos

48 = 2 * 2 * 2 * 2 * 3
36 = 2 * 2 * 3 * 3
30 = 2 * 3 * 5

MDC (30, 36, 48) = 2 * 3 = 6

Determinando o número total de equipes:

48 + 36 + 30 = 114 → 114 : 6 = 19 equipes

O número de equipes será igual a 19, com 6 participantes cada uma. 

2) (PUC–SP) Numa linha de produção, certo tipo de manutenção é feita na máquina A a cada 3 dias, na máquina B, a cada 4 dias, e na máquina C, a cada 6 dias. Se no dia 2 de dezembro foi feita a manutenção nas três máquinas, após quantos dias as máquinas receberão manutenção no mesmo dia. 

Temos que determinar o MMC entre os números 3, 4 e 6. 



MMC (3, 4, 6) = 2 * 2 * 3 = 12 

Concluímos que após 12 dias, a manutenção será feita nas três máquinas. Portanto, dia 14 de dezembro. 


3) Um médico, ao prescrever uma receita, determina que três medicamentos sejam ingeridos pelo paciente de acordo com a seguinte escala de horários: remédio A, de 2 em 2 horas, remédio B, de 3 em 3 horas e remédio C, de 6 em 6 horas. Caso o paciente utilize os três remédios às 8 horas da manhã, qual será o próximo horário de ingestão dos mesmos?

Calcular o MMC dos números 2, 3 e 6.



MMC(2, 3, 6) = 2 * 3 = 6

O mínimo múltiplo comum dos números 2, 3, 6 é igual a 6.

De 6 em 6 horas os três remédios serão ingeridos juntos. Portanto, o próximo horário será às 14 horas. 


4) Se x e y são números naturais em que m.m.c(y, x) = 115 e m.d.c(y, x) = 214, podemos dizer que o resto da divisão de xy por 23 é:

(A) é um número primo
(B) é um número par
(C) é maior que 100
(D) é 214
(E) é 115

5)  Se x e y são números naturais em que m.m.c(y, x) = 154 e m.d.c(y, x) = 2, podemos dizer que xy:

(A) é um número primo
(B) é um número ímpar
(C) é maior que 500
(D) é divisível por 11
(E) é múltiplo de 15

6) Se x é um número natural em que m.m.c(140, x) = 2.100 e m.d.c(140, x) = 10, podemos dizer que x:

(A) é um número primo
(B) é um número par
(C) é maior que 150
(D) é divisível por 11
(E) é múltiplo de 14

7) Um ciclista dá uma volta em torno de um percurso em 1,2 minutos. Já outro ciclista completa o mesmo percurso em 1,6 minutos. Se ambos saem juntos do ponto inicial de quantos em quantos segundos se encontrarão no mesmo ponto de partida?

(A) 120
(B) 240
(C) 280
(D) 288
(E) 360


8) Um corredor dá uma volta em torno de um percurso em 12 minutos. Já outro corredor completa o mesmo percurso em 14 minutos. Se ambos saem juntos do ponto inicial de quantos em quantos minutos se encontrarão no mesmo ponto de partida?

9) Se o mdc (máximo divisor comum) entre dois números naturais é 1 e o produto entre eles é 14, então o mmc (mínimo múltiplo comum) entre os dois números naturais é

(A) 14
(B) 140
(C) 1.400
(D) 1
(E) 0

10) Se o mmc entre dois números naturais é 2.450 e o produto entre eles é 306.250, então o mdc entre os dois números naturais é

11) Se o mmc entre dois números naturais é 15 e o mdc entre os mesmos é também 15, então o produtos entre os dois números naturais é:

(A) 340
(B) 490
(C) 280
(D) 150
(E) 225

12) Um tanque tem 210 litros e outro tanque tem 475 litros. Qual seria a capacidade máxima, em litros, de um balde (totalmente cheio) que pudesse completar o volume dos dois tanques?

(A) 1 L
(B) 2 L
(C) 3 L
(D) 5 L
(E) 15 L

13) Obter o máximo divisor comum entre os números 21 e 49

(A) 7
(B) 49
(C) 147
(D) 12
(E) 14

14) Obter o mínimo múltiplo comum entre os números 250 e 450

(A) 2.000
(B) 2.150
(C) 2.250
(D) 2.500
(E) 4.500


Gabarito:

4) B  5) D  6) B  7) D  8) E  9) A  10) C  11) E  12) D  13) A  14) C  



Máximo divisor comum (mdc)


Para estudarmos o máximo divisor comum entre dois termos, precisamos saber o que é divisor de um número. Todo número natural possui divisores, isto é, se ao dividirmos um número A pelo número B e obtermos resto zero podemos afirmar que B é divisor de A. Por exemplo: 

16 : 2 é igual a 8 e resto 0. 
25 : 5 é igual a 5 e resto 0. 

Podemos concluir que 2 e 5 são divisores de 16 e 25 respectivamente. 

Exemplos de divisores de um número: 

Divisores de: 
32 = 1, 2, 4, 8, 16, 32 
15 = 1, 3, 5, 15 
45 = 1, 3, 5, 9, 15, 45 

O MDC entre dois ou mais números é o maior divisor comum a eles. 
Exemplos: 

MDC(12,36) 
Divisores de 12 = 1, 2, 3, 4, 6, 12 
Divisores de 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36 
Podemos verificar que o maior divisor comum entre 12 e 36 é o próprio 12. 

MDC(12,24,54) 
Divisores de 18 = 1, 2, 3, 6, 9, 18 
Divisores de 24 = 1, 2, 3, 4, 6, 8, 12, 24 
Divisores de 54 = 1, 2, 3, 6, 18, 27, 54 
O maior divisor comum a 12, 24 e 54 é o 6. 


Processo prático para a obtenção do máximo divisor comum 

MDC(12,36) 

Os números destacados na fatoração estão dividindo os dois números ao mesmo tempo, então devemos realizar uma multiplicação entre eles para descobrirmos o máximo divisor comum. 
2 x 2 x 3 = 12 
MDC(12,36) = 12 


MDC(70,90,120) 

O máximo divisor comum a 70, 90 e 120 = 2 x 5 = 10 


Mínimo Múltiplo Comum (mmc)

O mínimo múltiplo comum de dois ou mais números naturais é o menor múltiplo comum a todos estes números.
Denotamos o mínimo multiplo comum dos números {a, b, c, ...} por mmc(a, b, c, ...).
Em um procedimento mais rústico, para se obter o mínimo múltiplo comum entre dois ou mais números naturais, fazemos uma listagem de seus primeiros múltiplos até encontrar o menor comum.

Exemplo — Obter mmc(10, 12, 15).
  
 
10: {10, 20, 30, 40, 50, 60, 70, 80, ... }
12: {12, 24, 36, 48, 60, 72, 84, .... }
15: {15, 30, 45, 60, 75, 90, ...}
Portanto, mmc(10, 12, 15) = 60.


Cardica
Cuidado: Apenas números naturais têm m.m.c.

Outro modo de se determinar o mmc entre dois ou mais números naturais é fatorar cada um deles.
Basta multiplicar todos os fatores comuns, sendo que a quantidade de vezes que cada fator vai comparecer é a mesma que o maior comparecimento em pelo menos uma ocasião dos números fatorados.
Exemplo — Obter mmc(24, 36).
  
 
24 = 2 · 2 · 2 · 3
36 = 2 · 2 · 3 · 3
Veja quais são os fatores envolvidos: do 'tipo' {2} e do 'tipo' {3}.
Quantas vezes cada 'tipo' de fator compareceu no 24 e no 36:
 {2}{3}
243 vezes1 vez
362 vezes2 vezes

O mmc(24,36) será o produto de todos os fatores envolvidos, na maior quantidade envolvida (em pelo menos uma das fatorações). Ou seja:
{2}{3}
3 vezes 
 2 vezes

Portanto, mmc(24, 36) = 2 · 2 · 2 · 3 · 3 = 72

Exemplo — Obter mmc(30, 56, 70).
  
 
30 = · 3 · 5
56 = 2 · 2 · 2 · 7

70 = · 5 · 7
Veja quais são os fatores envolvidos: do 'tipo' {2}, do 'tipo' {3}, do 'tipo' {5} e do 'tipo' {7}.
Quantas vezes cada 'tipo' de fator compareceu no 24 e no 36:
 {2}{3}{5}{7}
301 vez1 vez1 vez0 vezes
563 vezes0 vezes0 vezes1 vez
701 vez0 vezes1 vez1 vez

O mmc(30, 56, 70) será o produto de todos os fatores envolvidos, na maior quantidade envolvida (em pelo menos uma das fatorações). Ou seja:
 {2}{3}{5}{7}
30 1 vez1 vez 
563 vezes  1 vez
70  1 vez1 vez

Portanto, mmc(30, 56, 70) = 2 · 2 · 2 · 3 · 5 · 7 = 840

Eventualmente, o mdc (máximo divisor comum) é mais fácil de ser obtido que o mmc (mínimo múltiplo comum) e podemos usar esta relação válida entre mdc e mmc de números naturais:
mmc(x,y,z,...)=xyz...mdc(x,y,z,...)

Exemplo — Obter mmc(24, 36).
  
 
24 = 2 · 2 · 2 · 3
36 = 2 · 2 · 3 · 3
Temos que mdc(24, 36) = 12 (ver m.d.c.)
Assim,
mmc(2436) = 24 · 36 mdc(2436)
mmc(2436) = 24 · 36 12
mmc(2436) = 24 · 36 12 = 72

Exemplo — Obter mmc(1024, 7).
  
 
Temos que mdc(1024, 7) = 1 (ver m.d.c.) pois são primos entre si.
Vai ficar bem mais rápido usar:
mmc(x,y,z,...)=xyz...mdc(x,y,z,...)
Assim,
mmc(1024,7)=10247mdc(1024,7)=102471=10247=7168


Cardica
Quando dois ou mais números naturais são primos entre si (isso significa que o mdc entre eles é 1), o mmc entre eles será o resultado da multiplicação simples entre eles.
Exemplos:
mmc(635) = 6 · 35 = 210.
mmc(1445) = 14 ·45 = 630.
mmc(82725) = 8 · 27 · 25 = 5400.

Fonte: www.mundoeducacao.com
            www.profcardy.com/

34 comentários:

  1. Gostaria se possível da resolução das questões 4,5,6,7,8,9,10,11,12,13,14.Pois algumas não estão batendo as respostas.
    annakarolina_2002@yahoo.com.br

    ResponderExcluir
  2. Gostaria se possível da resolução das questões 4,5,6,7,8,9,10,11,12,13,14.Pois algumas não estão batendo as respostas.
    melkymoser@gmail.com

    ResponderExcluir
  3. Gostaria se possível da resolução das questões 4,5,6,7,8,9,10,11,12,13,14.Pois algumas não estão batendo as respostas.
    melsgm7@gmail.com

    ResponderExcluir
  4. Em que situações o MMC é menor que MDC, ou há erro de digitação no item 4?

    ResponderExcluir
  5. 12º 210,475 l 5
    42 ,95

    13º 21,49 l 7
    3 , 7

    14º 250,450 l 2
    125,225 l 3
    125,75 l 3
    125,25 l 5
    25,5 l 5
    5 ,1 l 5
    1,1
    2*3*3*5*5*5= 2250

    ResponderExcluir
  6. Questão 4

    XxY=115x214
    XY=24.310

    24.310 dividido por 23 tem resto 22 (Par)
    Alternativa B

    Espero ter ajudado!

    ResponderExcluir
    Respostas
    1. 115x214 =24610 e não 24310. Assim sendo, 24610 dividido por 23 dá resto 0, então, opção B.

      Excluir
    2. A questão 4 já foi respondida sendo com certeza letra B, basta multiplicar 115 x 214= 24610 e dividir por 23 da resto zero.

      Excluir
    3. A questão 5 basta seguir a orientação do enunciado que pede para multiplicar xy, então faremos MMC (y,x) = 154 multiplicado por MDC (y,x) = 2 , resultado de 154x2 é igual a 308 . Agora analise as respostas; é primo, não, pois é divisível por 1,2,4,7; É um numero impar, não pois termina em 8 e 8 é par; É maior que 500, não, 308 é menor que 500; é divisível por 11, sim,dá 28, como eu sei que é divisível por 11, basta diminuir a soma dos pares com os impares, 308, o primeiro é impar o segundo é par o terceiro a impar, resultado 11, regra de divisibilidade, portanto resposta D.

      Excluir
    4. Este comentário foi removido pelo autor.

      Excluir
    5. Este comentário foi removido pelo autor.

      Excluir
    6. Questão 6:

      140.X=MMC . MDC (140, X)=10
      X= 2100.10/140= 150
      Resp. B.
      Desnecessário analisarmos as demais alternativas.

      Excluir
    7. Questão 8;
      Nessa questão vamos extrair o MMC de 12 e 14 minutos, através de de composição simultânea, ou seja, fatoramos os números 12 e 14 e obtemos na soma dos fatores 2.ao quadrado . 3.7 = 84 minutos, portanto se eles saírem juntos a cada 84 minutos se encontraram no ponto de partida.

      Excluir
    8. Questão 9:
      MDC=1
      MMC+14
      14/1= 14, resposta A

      Excluir
    9. Questão 10;

      Segundo a teoria, Se AxB=MMC (A,B) . MDC (A,B)

      AxB=306.250 e MMC (A,B) = 2.450

      306.250 =2.450 . MDC (A,B)
      MDC (A,B)= 306.250/ 2.450= 125.
      Resposta: 125, embora não apareça as alternativas.

      Excluir
    10. Questão 11:
      Mesmo processo, AxB=15 . MDC=15
      AxB= 15.15
      AxB=225.
      Resp. E.

      Excluir
    11. As demais questões 12, 13 e 14 basta extrair o MMC ou MDC. valeu.

      Excluir
  7. Este comentário foi removido pelo autor.

    ResponderExcluir
  8. ola gostaria de saber a resolução da questão 7

    ResponderExcluir
  9. A questão 7 pede sua resposta em segundos, portanto vc deve transformar 1,2 e 1,6 minutos em segundos, o que equivalem respectivamente a 62 s e 66 s , depois tirar o mdc = 2 min, transforme em segundos o que vai dar 120 segundos, resp. A.

    ResponderExcluir
    Respostas
    1. ta errado sua resposta 1,2 e 1,6 minutos transformados em segundos e so multiplicar por 60 q dar respectivamente 72 e 96 depois tirar o mmc q dar 288 letra D

      Excluir
  10. nunca que o mmc sera menor que o mdc. se o x,y referente ao 115 e o x,y referente ao 214 for numeros diferentes nao deveriam ter a mesma representação.

    ResponderExcluir
  11. Sua questão numero 7 ta resolvida completamente errado!!!
    Primeiro que não é MDC...de quanto em quando tempo vão se encontrar(coincidência), é MMC. E segundo que pra transformar em segundos vc tem que multiplicar por 60. 1,2x60=72 e 1,6x60=96. Depois tira o MMC de 72 e 96 da 288 segundos. Alternativa D

    ResponderExcluir
  12. Alguém poderia resolver as questões 4,5 e 6 de forma mais explicada. Li os comentários e não entendi de forma muito clara. Obrigado desde já.Matheus.elencof@gmail.com

    ResponderExcluir
    Respostas
    1. Matheus:

      (04) Memoriza essa fórmulinha pra esse tipo de problema: O MMC de dos números é o produtos deles dividido pelo MDC.

      115*214/23 ... Só fazer a divisão e achar o resto.

      (05) 154*2= x => 308= x

      (06) A regra SEMPRE é que o M.M.C de dois números é o produto deles dividido pelo M.D.C. Então, fica:

      140.x/10=2100 => 14x= 2100 => x= 2100/14 => x= 150

      Excluir
  13. O problema 4 está totalmente errado.
    É impossível.

    ResponderExcluir