quarta-feira, 14 de agosto de 2013

40 questões resolvidas de Trigonometria

1) (FUVEST-SP) O dobro do seno de um ângulo α, onde temos 0 < a < pi/2, é igual ao triplo do quadrado de sua tangente. Logo, qual o valor do seu cosseno?

Solução:

Pelo enunciado temos:

2sen(α) = 3tg²(α)

Sabendo que tg(α) = sen(α)/cos(α), substituímos e chegamos a

2sen(α) = 3sen²(α)/cos²(α)
3sen²(α) = 2sen(α)cos²(α)
3sen(α) = 2cos²(α)

Se, pela relação fundamental, sen²(α) + cos²(α) = 1, então cos²(α) = 1 - sen²(α). Então, substituindo e fazendo x = sen(α):

3sen(α) = 2 - 2sen²(α)
3x = 2 - 2x²
2x² + 3x - 2 = 0
x = {-2, 1/2}

Como x = sen(α), o único valor válido é x = 1/2. Agora que sabemos o valor de sen(α), usamos esse valor na equação que achamos anteriormente:

3sen(α) = 2cos²(α)
3/2 = 2cos²(α)
cos²(α) = 3/4
cos(α) = √3/2

2) (FUVEST-SP) Os lados de um triângulo medem √5, √10 e 5. Qual o comprimento da altura relativa ao lado maior?


Solução:


Vamos fazer o desenho para representar a situação, assumindo que a altura encontra a base no ponto D e divide o lado AC em duas partes: a e 5 - a.


Aplicando a lei dos cossenos no triângulo ABC, referente ao ângulo α:


(√10)² = (√5)² + 5² - 2 * √5 * 5 * cos(α)

10 = 30 - 10√5 * cos(α)
cos(α) = 2√5/5

No triângulo ABD:


cos(α) = a/√5 = 2√5/5

5a = 10
a = 2

Ainda em ABD, aplicando Pitágoras:


h² + 2² = (√5)² => h = 1


Uma resolução mais curta e direta é montar um sistema de equações aplicando Pitágoras nos dois triângulos retângulos e resolvê-lo. Fica aí a sugestão, caso queira complementar.




3) Ilustração da questão dobraduras de papel

Uma folha quadrada de papel ABCD é dobrada de modo que o vértice C coincide com o ponto M, médio de AB. SE o lado de ABCD é 1, o comprimento BP é:

a) 0,300.
b) 0,325.
c) 0,375.
d) 0,450.
e) 0,500.

Sabemos que MB vale 1/2 e o ângulo CBP é reto, mas não dá para fazer muita coisa só com essas informações, não é mesmo? Pois bem, façamos o seguinte para descobrir PC. Na folha original, antes de ser dobrada, notamos que o lado CB vale 1. Assim sendo, se BP vale 1, então PC vale 1 - x:


Primeira parte da resolução da questão dobraduras de papel

Ora, o comprimento de PC não muda quando dobramos o papel, então ficamos com a figura abaixo:


Segunda parte da resolução da questão dobraduras de papel

Aplicando Pitágoras, temos

x² + (1/2)² = (1 - x)²
 + 1/4 = 1 - 2x + 
x = 0,75/2 = 0,375

Alternativa c.

4) Um avião decola, percorrendo uma trajetória retilínea, formando com o solo, um ângulo de 30º (suponha que a região sobrevoada pelo avião seja plana). Depois de percorrer 1 000 metros, qual a altura atingida pelo avião?

Solução:




A altura será de 500 metros

5) (USININOS-RS) Um avião levanta voo sob um ângulo constante de 20º. Após percorrer 2 000 metros em linha reta, qual será a altura atingida pelo avião, aproximadamente? (Utilize: sem 20º = 0,342; cos 20º = 0,94 e tg 20º = 0,364)

Solução:



A altura atingida pelo avião será de 684 metros.

7) Determine o valor do lado oposto ao ângulo de 60º. Observe figura a seguir:




x² = 6² + 8² - 2 * 6 * 8 * cos 60º
x² = 36 + 64 – 96 * 1/2
x² = 100 – 48
x² = 52
√x² = √52
x = 2√3

8) O menor arco positivo "x", para o qual
é:
(A) 
(B) 
(C) 
(D) 
(E) 

Solução:

Aplicando as propriedades de potenciação e igualando as bases, temos:



Cortando as bases:

O menor arco que possui cosseno igual a 1/2 é 60o,ou seja,  resposta certa, letra “C”

9) Se sen   e α for pertencente ao 4º Quadrante, o valor da expressão  será:
    (A) 28
    (B) -24
    (C) -26
    (D) 27
    (E) 25


Solução:

Utilizando a equivalência fundamental da trigonometria, sen²(x) + cos²(x) = 1

Podemos calcular o valor de cos α:

Sabendo que α está no quarto quadrante, então o co-seno é positivo e vale 3/5.

Sabendo que  temos que tan α = - 4/3

Agora iremos utilizar as seguintes fórmulas:
cos(2x) = cos²(x) - sen²(x)
sen(2x) = 2sen(x)cos(x)

podemos fazer uma transformação nestas fórmulas e utilzá-las da seguinte maneira:
        (1)
    (2)

estas transformações são válidas, pois a fórmula diz que o seno do dobro de um arco é igual à duas vezes o seno deste arco vezes o co-seno deste arco. Vamos tomar nosso arco como sendo x/2, portanto o dobro deste arco será x. O mesmo vale para o co-seno.

Na equação (2) vamos isolar o valor de  e substituir o valor de cos x que já sabemos:

Veja que a raiz trouxe duas opçoes, ou + ou –, qual iremos utilizar? Como o ângulo é do quarto quadrante, a metade deste ângulo será do segundo quadrante, portanto terá seno positivo, vale o +. 
Agora que já sabemos este valor, vamos substituí-lo na equação (1)

Para calcular melhor esta equação, vamos elevar os dois lados da equação ao quadrado. O valor de sen x já sabemos, podemos substituí-lo.
Dá para cortar o 16 com o 4

Para facilitar os cálculos daqui para frente, vamos chamar o, ou seja:

Aplicando Bhaskara, achamos como raízes:
Y'=4/5
Y''=-1/5

Como  , ou seja, é um número elevado ao quadrado, não pode ter como resposta um valor negativo, portanto, o único valor que Y pode admitir é 4/5:
Como α/2 está no segundo quadrante, seu cosseno será negativo, portanto, vale a raiz negativa.

Pronto, achamos o valor de

Agora só nos falta achar o valor de , utilizaremos a fórmula:
Pronto, já temos todas as informações pedidas, agora é só substituir na fórmula pedida.

Resposta correta, letra “C”

10) O conjunto imagem da função trigonométrica 


Solução:

Esta função é muito difícil de se determinar a imagem, no formato em que se encontra.
Devemos então "transformá-la" para que fique em um formato mais fácil de calcular o que se pede!
A transformação é a seguinte:
Vamos começar com a principal jogada desta transformação, multiplicar a função por . Note que estamos multiplicando por 1(pois ) e isto não altera o valor da função.
Agora vamos efetuar a multiplicação:
Esta parte é um pouco complicada. Vamos colocar o termo  em evidência

Note que é o valor do seno de 45o e também do cosseno de 45o. Vamos aplicar a substituição conveniente e racionalizar o termo .

Agora veja, que dentro dos colchetes temos uma expressão que podemos trocar por sen(45o-x), lembrando da fórmula:
sen(a-b)=sen(a)cos(b)-sen(b)cos(a)
Pronto, agora é fácil calcular a imagem desta função. A imagem de sen(45o-x) é de -1 até 1, portanto, o valor máximo que f(x) poderá atingir é quando sen(45o-x) for igual a 1, portanto, o valor máximo de f(x) será. O valor mínimo que f(x) poderá atingir é quando sen(45o-x) for igual a -1, portanto, o valor mínimo de f(x) será.
A imagem de f(x) será




12) SENDO TETA UM ÂNGULO AGUDO E UM TRIÂNGULO RETÂNGULO QUALQUER, SABE-SE QUE O SENO DE TETA É IGUAL 0.6.

DETERMINE O COSSENO E A TANGENTE DE TETA.

Solução:


senθ =6/10 ou 3/5 (co/hip)


hip² =co²+ca²

5² =3²+ca²
ca² =25-9
ca²=16
ca = 4

cosθ =ca/hip = 4/10 ou 0,4


tgθ =co/ca ou senθ/cosθ 

tgθ = 3/4 = 0,75

13) Calcular o valor de seno, cosseno e tangente do angulo alfa no triangulo retângulo  cuja a hipotenusa é 4, cateto oposto é 2 e o cateto adjacente é 2 raiz de 3. Só que o angulo no triangulo é reto em cima.


Sabendo que:
- sen (x) = cateto oposto / hipotenusa
- cos (x) = cateto adjacente / hipotenusa
- tg (x) = sen (x) / cos (x)

sen (x) = 2/4 = 1/2 <=> sen^[-1] (1/2) = π/6 --> ângulo alfa
cos (x) = 2√3 / 4 = √3 / 2 <=> cos^[-1] (√3/2) = π/6 --> ângulo alfa
tg (x) = (1/2)/ √3/2 = 1/√3

14) NUM TRIANGULO RETANGULO DE HIPOTENUSA 10 cm, AS MEDIDAS DOS CATETOS ESTAO NA RAZAO DE 1 PARA 3.?
DETERMINE AS MEDIDAS DAS PROJEÇÕES DOS CATETOS NA HIPOTENUSA.



Solução: 



a =10

b/c =1/3 → c = 3b


a² =b²+c²
100 =b²+9b²
10b² =100
b =√10
c=3√10

Projeções sobre a hipotenusa:
b² = a.m
10 =10m
m=1cm

c² =a.n
90 =10n
n=9 cm

15) . (Vunesp, 2010) Em certo dia do ano, em uma cidade, a maré alta ocorreu à meia-noite. A altura da água no porto dessa cidade é uma função periódica, pois oscila regularmente entre maré alta e maré baixa, ou seja, a altura da maré aumenta até atingir um valor máximo (maré alta) e vai diminuindo até atingir um valor mínimo (maré baixa), para depois aumentar de novo até a maré alta, e assim por diante. A altura y, em metros, da maré, nesse dia, no porto da cidade, pode ser obtida, aproximadamente, pela fórmula: y=2+1,9.cos(π.t/6), sendo t o tempo decorrido, em horas, após a meia noite.


Analise as afirmações a respeito dessa situação:

I. no instante t = 3 h a altura da maré é de 2 m.
II. no instante t = 6 h ocorreu a maré baixa, cuja altura é de 0,1 m.
III. no instante t = 12 h ocorre maré alta, cuja altura é de 3,9 m.

É correto o que se afirma em

(A) I, II e III.
(B) II e III, apenas.
(C) I e III, apenas.
(D) I e II, apenas.
(E) I, apenas.

Solução:

Para t= 3 h
y= 2 + 1,9 . cos(π.t/6) = 2 + 1,9 . cos(π.3/6) =2 + 1,9 . cos(π/2)
y= 2 + 1,9 . cos(90°) = 2 + 1,9 . 0 = 2 m

Para t= 6 h

y= 2 + 1,9 . cos(π.t/6) = 2 + 1,9 . cos(π.6/6) = 2 + 1,9 . cos(π)
y = 2 + 1,9 . cos(180°) = 2 + 1,9 . (-1) = 2 - 1,9 = 0,1 m

Para t= 12 h

y=2 + 1,9 . cos(π.t/6) = 2 + 1,9 . cos(π.12/6) = 2 + 1,9 . cos(2π)
y= 2 + 1,9 . cos(360°) = 2 + 1,9 . 1 = 2 + 1,9 = 3,9 m

16)  Encontre as soluções das equações trigonométricas seguintes:

a) 3tg x + 4√3 = 5√3 no intervalo [0, 2π]
b) cos²x – 3cos x + 2 = 0 no intervalo 0 ≤ x ≤ π
c) sen 2x – 1/2 = 0 no intervalo 0 ≤ x ≤ π

Solução:

a) 3tg x + 4√3 = 5√3
    3tg x = 5√3 - 4√3
    3tg x = √3
     tg x = √3
                3

No intervalo [0, 2π] os ângulos cuja tangente vale √3/3 são 30º e 210º.
S = {30º; 210º}

b) cos²x – 3cos x + 2 = 0
    cos x = t
    t² - 3t + 2 = 0
    t = 1  e  t = 2
Como não existe cosseno valendo 2:
cos x = 1
No intervalo 0 ≤ x ≤ π, x = 0.
S = { 0 }

c) sen 2x – 1/2 = 0
    sen 2x = 1/2

Os ângulos cujo seno vale 1/2 no intervalo 0 ≤ x ≤ π são 30º e 150º, porém o ângulo da questão é 2x, então:
2x = 30º  e  2x = 150º
x = 15º  e  x = 75º
S = {15º; 75º}


17) (UFRGS) No intervalo [0, π] a equação tg x – 1 = 0:

a) não possui raízes.
b) possui uma única raiz.
c) possui apenas 2 raízes.
d) possui exatamente 4 raízes.
e) apresenta infinitas raízes.

Solução:

tg x – 1 = 0
tg x = 1

Os ângulos onde a tangente vale 1 são 45º e 225º, no intervalo [0, 2π], então, no intervalo [0, π] temos uma única raiz.

Gabarito Letra: B 

18) (ITA 2012) Seja x є [0, 2 π] tal que sen(x)cos(x) = 2/5.
Então, o produto e a soma de todos os possíveis valores de tg(x) são, respectivamente

a) 1 e 0
b) 1 e 5/2
c) -1 e 0
d) 1 e 5
e) -1 e -5/2

Solução:

sen(x)cos(x) = 2/5

Dividimos todo mundo por cos²(x), pois surge uma tangente e uma secante ao quadrado que podemos transformar em tangente depois, vejamos como fazemos aparecer o que buscamos:
sen(x)cos(x) =   2/5  cos(x)cos(x) = cos²(x)

tg(x) = 2 .  1    .
           5  cos²(x)

tg(x) = 2sec²(x)
           5

A identidade trigonométrica diz que:
sec²x = 1 + tg²x

tg(x) = 2/5[1 + tg²(x)]
tg(x) = 2/5 + 2/5tg²(x)
– 2/5tg²(x) + tg(x) – 2/5 = 0

Caímos numa equação do 2º grau, cuja incógnita é tg(x) fazendo a soma e o produto em função de tg(x) chegamos em:
Soma = 5/2   Produto: 1

Gabarito Letra: B

19) Qual o valor máximo da função y = 10 + 5 cos 20x ?

Solução:


O valor máximo da função ocorre quando o fator cos20x é máximo, isto é, quando cos 20x = 1. Logo, o valor máximo da função será y = 10 + 5.1 = 15.

20) Qual o valor mínimo da função y = 3 + 5 sen 2x?

Solução:


O valor mínimo da função ocorre quando o fator sen2x é mínimo, isto é, quando sen2x = -1.
Logo, o valor mínimo da função será y = 3 + 5(-1) = - 2 .

21) Qual o valor máximo da função 
Solução:

A função terá valor máximo, quando o denominador tiver valor mínimo. Para que o denominador seja mínimo, deveremos ter cos 20x = 1 \
y = 10 / (6 - 2.1) = 10 / 4 = 5/2.
Portanto, o valor máximo da função é 5/2.

Qual seria o valor mínimo da mesma função?
Resposta: 5/4

22) Para que valores de m a equação sen 30x = m - 1 tem solução?

Solução:

Ora, o seno de qualquer arco, é sempre um número real pertencente ao intervalo fechado [-1,1]. Logo, deveremos ter: -1 £ m -1 £ 1 \ 0 £ m £ 2.
Agora calcule:

a) o valor mínimo da função y = 2 + 9sen4x.
b) o valor máximo da função y = 10 - cosx .
c) o valor de y = sen 180º - cos270º
d) o valor de y = cos 180º - sen 270º
e) o valor de y = cos(360.k) + sen(360.k), para k inteiro.

Respostas: a) - 7  b) 11  c) 0   d) 0  e) 1

23) Encontre a solução da equação cos x + 1 = 0

Solução:

Temos que cos x = - 1. Então x = πrad é uma solução, pois cos π = -1.
Assim, cos x = cos π
Como os arcos de medidas πrad e - πrad possuem a mesma extremidade, o conjunto solução é:
S = {x E R/x = π + 2kπ, k E Z}

24) Ache o o conjunto solução da equação sen (5x) + sen (2x) = 0

Solução:

Observe que é possível transformar o 1º membro em um produto; além disso, o 2º membro é zero. Assim sendo, lembrando que sen p + sen q = 2*sen p + q / 2* cos p - q / 2, temos:

2*sen 5x + 2x /2*cos 5x - 2x /2 = 0 ► sen 7x / 2*cos3x /2 = 0 ► sen 7x/ 2 = 0 ou cos 3x /2 = 0

Para sen 7x/ 2 = sen 0, temos: 7x/ 2 = kπ, k E Z. Portanto:  7x = 2kπ ► x = 2kπ / 7, k E Z

Para cos 3x/ 2 = cos π/2, temos: 3x / 2 = π/ 2 + kπ, k E Z.

Entao: 3x = π + 2kπ ► x =  π/ 3 + 2kπ/ 3, k E Z.

O conjunto solução é: S = {x E R/ x = π/3 + 2kπ/ 3 ou x = 2kπ/ 7, k E Z}

Obs: esse mesmo problema poderia ser resolvido assim:

sen (5x) + sen (2x) = 0  ► sen (5x) = - sen (2x) 

como: - sen (2x) = sen (- 2x)  desse modo temos:

5x = - 2x + 2kπ ou 5x = π - (-2x) + 2kπ, k E Z, daí obtemos:

x = 2kπ/ 7 ou x = π/ 3 + 2kπ/ 3, k E Z

25) 
Solução:
26) 
Solução:
27) 
Solução:
28) 
Solução:
29) A soma das raízes da equação sen2x=1/2, contidas no intervalo fechado [0,2π], vale:
a) 2π  b) 3π  c) 4π  d) 5π  e)6π 
Solução:
sen x = 0.5
sen 30 pi/180 = pi/6
(x pertence aos numeros reias tal que x=pi/6+2kpi/k pertence aos numeros inteiro

RESPOSTA: LETRA B

30) Resolva as seguintes equações trigonométricas:

a) 2cosx – 3secx = 5

Solução:
Lembrando que secx = 1/cosx, vem, por substituição:
2.cosx – 3.(1/cosx) – 5 = 0
2.cosx – 3/cosx – 5 = 0
Multiplicando ambos os membros por cosx ¹ 0, fica:
2.cos2x – 3 – 5.cosx = 0
Arrumando convenientemente, teremos:
2.cos2x – 5.cosx – 3 = 0.

Vamos resolver a equação do segundo grau em cosx. Teremos:

  

Portanto, cosx = 3  ou  cosx = -1/2.

A equação cosx = 3 não possui solução, já que o cosseno só pode assumir valores de –1 a +1.
Já para a equação cosx = -1/2, teremos:

cosx = -1/2 = cos120º = cos(2p/3)
Logo,
cosx = cos(2p/3)
Do resultado obtido no item 1.2 acima, poderemos escrever as soluções genéricas da equação dada:

x = 2kp + 2p/3   ou   x = 2kp - 2p/3
Estas soluções podem ser reunidas na forma:
x = 2kp ± 2p/3.

Logo, o conjunto solução da equação proposta será:
     S = {x | x = 2kp ± 2p/3, k inteiro}.

b)3.senx - Ö3.cosx = 0

Solução:

    Teremos: 3.senx = Ö3.cosx
Dividindo ambos os membros por cosx ¹ 0, fica:
3.senx/cosx = Ö3.cosx/cosx = Ö3.
3.tgx = Ö3
tgx = Ö3/3 = tg30º = tg(p/6)
Vamos então resolver a equação elementar
tgx = tg(p/6)
Do exposto no item 1.3 acima, vem imediatamente que:
x = kp + p/6.

c) tgx + cotgx = 2

Solução: 

   Substituindo tgx e cotgx pelos seus valores expressos em função de senx e cosx, vem:
senx/cosx + cosx/senx = 2

Efetuando a operação indicada no primeiro membro, vem:
(sen2x + cos2x)/(senx.cosx) = 2
Como sen2x + cos2x = 1, fica:
1/senx.cosx = 2
1 = 2.senx.cosx
1 = sen2x
sen2x = 1 = sen90º = sen(p/2).
sen2x = sen(p/2)
Aplicando o conhecimento obtido no item 1.1, vem:

2x = (2k+1)p - p/2  OU   2x = 2kp + p/2.
Dividindo ambas as expressões por 2, fica:
x = (2k+1).p/2 - p/4  OU   x = kp + p/4.
Simplificando a primeira expressão, vem:
x = kp + p/4  OU   x = kp + p/4.
Portanto, x = kp + p/4, que é a solução procurada.
d) 4(sen3x – cos3x) = 5(senx – cosx)

Solução: 

Lembrando da identidade:
A3 – B3 = (A – B) (A2 + AB + B2), poderemos escrever:
4(senx – cosx)(sen2x + senx.cosx + cos2x) = 5(senx - cosx)
Como sen2x + cos2x = 1, vem, substituindo:
4(senx – cosx)(1 + senx.cosx) = 5(senx – cosx)
Simplificando os termos em comum, vem:
4(1 + senx.cosx) = 5
1 + senx.cosx = 5/4
senx.cosx = 5/4 – 1 = 5/4 – 4/4 = 1/4
senx.cosx = 1/4

Multiplicando ambos os membros por 2, fica:
2.senx.cosx = 2(1/4)
2.senx.cosx = 1/2

Como já sabemos da Trigonometria que 2.senx.cosx = sen 2x, vem:
sen2x = 1/2 = sen30º = sen(p/6)
sen2x = sen(p/6)

Aplicando o conhecimento obtido no item 1.1 acima, fica:
2x = (2k+1)p - p/6 OU 2x = 2kp + p/6

Dividindo ambas as expressões por 2, vem:
x = (2k+1).p/2 - p/12 OU x = kp + p/12

Simplificando a primeira expressão, fica:
x = kp + 5p/12 OU x = kp + p/12, que é a solução procurada.
Portanto,
S = {x | x = kp + 5p/12 ou x = kp + p/12, k inteiro}.

31) Calcule em radianos: 30o, 60o, 75o, -120°, 136°, 1360°, -1360°.

Solução:



 já sabemos que a medida a em graus se relaciona com a medida x em radianos. Colocando: rad, temos:
Quando a = 30º, temos 
Quando a = 60º, temos 
Quando a = 75º, temos 
Quando a = -120º, temos 
Quando a = 136º, temos 
Quando a = 1360º, temos 
Quando a = -1360º, temos 

32) Calcule em graus:
3 rad,  rad, rad,  rad, 8 rad.

Solução:

 Já sabemos que a medida a em graus, se relaciona com a medida x em radianos. Colocando: , temos:
Quando x=3 rad, temos 
Quando x= rad, temos 
Quando x= rad, temos 
Quando x= rad, temos 
Quando x=8 rad, temos 

33) Quantas voltas serão dadas na circunferência trigonométrica para se representar os números  e -12? 
Solução:

Dado o número real , temos:


Portanto, para representa-lo será necessário dar uma volta inteira e mais um doze avos de meia volta, no sentido positivo de percurso, isto é, no sentido anti-horário.
Por outro lado, dado o número real -12, temos: , ou seja, será dada, aproximadamente, uma volta inteira e mais 0,91 de volta no sentido horário, já que o número dado é negativo.

34) (EXTRA-SP) O conjunto dos valores reais de x que tornam verdadeiras a desigualdade
a)
b)
c)
d)

Solução:

Usando que:
Para X = , temos
      
(I)
Resolvendo a inequação dada usando (I)
   
Como 1 - 2 < -1 a inequação proposta não apresenta solução real — porque não existe número real x para que cos2x < -1. Letra D
35) Resolva a inequação trigonométrica:

a)
b)
c)
d)

Solução:

Considerando que
,
temos que:

Atribuindo valores para k (inteiros) na inequação anterior para verificação de enquadramento ao intervalo proposto:
k
intervalo




0
convém
1
não convém
Letra D.

36) Calcule a primeira determinação positiva do conjunto de arcos de mesma extremidade que o arco de medida 38pi/3.

Solução:

Como 2pi=6pi/3=6.(pi/3) e 38pi/3=38.(pi/3), então dividindo 38 por 6, obtemos 6 voltas inteiras mais o resto que é 2
Multiplicando o resto 2 por pi/3, dá a medida do ângulo procurado A=2pi/3

37) Verifique se os arcos de medidas 7pi/3 e 19pi/3 são arcos côngruos?

Solução:

Como a diferença entre as medidas de dois arcos dados é:

d=19/3-7/3=4

que é um múltiplo de 2, então os arcos são côngruos.

38) No triângulo a seguir temos dois ângulos, um medindo 45º, outro medindo 105º, e um dos lados medindo 90 metros. Com base nesses valores determine a medida de x.

Solução:

Para determinarmos a medida de x no triângulo devemos utilizar a lei dos senos, mas para isso precisamos descobrir o valor do terceiro ângulo do triângulo. Para tal cálculo utilizamos a seguinte definição: a soma dos ângulos internos de um triângulo é igual a 180º. Portanto:

α + 105º + 45º = 180º
α + 150º = 180º
α = 180º – 150º
α = 30º

Aplicando a lei dos senos



39) Calcule a medida da maior diagonal do paralelogramo da figura a seguir, utilizando a lei dos cossenos.


Solução:

cos 120º = –cos(180º – 120º) = – cos 60º = – 0,5

x² = 5² + 10² – 2 * 5 * 10 * ( – cos 60º)
x² = 25 + 100 – 100 * (–0,5)
x² = 125 + 50
x² = 175
√x² = √175
x = √5² * 7
x = 5√7

Portanto, a diagonal do paralelogramo mede 5√7 cm.

40) Qual o valor máximo da função y = 10 + 5 cos 20x ?

Solução: 

O valor máximo da função ocorre quando o fator cos20x é máximo, isto é, quando cos 20x = 1. Logo, o valor máximo da função será y = 10 + 5.1 = 15.

41) Um alpinista deseja calcular a altura de uma encosta que vai escalar. Para isso, afasta-se, horizontalmente, 80 m do pé da encosta e visualiza o topo sob um ângulo de 55º com o plano horizontal. Calcule a altura da encosta. (Dados: sem 55º = 0,81, cos 55º = 0,57 e tg 55º = 1,42)
      Resp: 113,6m

           www.tutorbrasil.com.br
          www.matematicaemexercicios.com
          www.algosobre.com.br
          guiadoestudante.abril.com.br

2 comentários:

  1. oi muuuuuu
    anonimo vaca

    ResponderExcluir
  2. olhe so gostei porq ure tinha um auqestao que era igual a minha se nao num ia gustar nau m gustei na verdade
    [

    ResponderExcluir